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Viscoplasticity and the dynamics of brittle fracture

J. S. Langer
Department of Physics, University of California, Santa Barbara, California 93106

~Received 17 December 1999!

I propose a model of fracture in which the curvature of the crack tip is a relevant dynamical variable and
crack advance is governed solely by plastic deformation of the material near the tip. This model is based on a
rate-and-state theory of plasticity introduced in earlier papers by Falk, Lobkovsky, and myself. In the approxi-
mate analysis developed here, fracture is brittle whenever the plastic yield stress is nonzero. The tip curvature
finds a stable steady-state value at all loading strengths, and the tip stress remains at or near the plastic yield
stress. The crack speed grows linearly with the square of the effective stress intensity factor above a threshold
that depends on the surface tension. This result provides a possible answer to the fundamental question of how
breaking stresses are transmitted through plastic zones near crack tips.

PACS number~s!: 46.05.1b, 62.20.Fe, 62.20.Mk
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I. INTRODUCTION

Among the most intriguing puzzles in nonequilibrium m
terials physics is the question of how brittle fracture c
occur in viscoplastic solids. Simply stated, most solids fl
plastically at some yield stresssy and therefore cannot sup
port steady stresses larger than this value. However,sy is
ordinarily assumed to be smaller than the cohesive st
needed to break bonds at the tip of a crack. How then can
breaking stress be transmitted through the plastic zone
the tip? This question reveals a deep inconsistency betw
conventional theories of plasticity on the one hand@1,2# and
conventional descriptions of brittle fracture on the oth
@3,4#.

One recent attempt to solve the tip-stress puzzle is
strain-gradient theory of Flecket al. @5–7#. The idea here is
that the tangle of dislocations made geometrically neces
by the strong strain gradients at the crack tip hardens
material in that region, permitting large stresses to reach
tip. This picture cannot be entirely satisfactory; the sa
phenomena occur in noncrystalline materials where the
location mechanism is not relevant. Moreover, the geome
necessity of dislocations in a deformed material depends
the assumption that crystalline order persists and bends
the overall deformation, instead of dissolving and reform
in new directions. It is not clear~to me! which of these
pictures is most accurate in the strong stress field ne
moving crack tip.

Some years ago, Freund and Hutchinson@8# ~FH! pursued
a different line of argument. They used the fact that, in v
coplastic materials,~deviatoric! stresses abovesy drive plas-
tic strainrates~not just strains! which, although not sustain
able in purely stationary situations, cause only fin
deformations in the transitory neighborhood of a movi
crack tip. The FH calculation consists simply of taking t
well-known formula for the stresses in the neighborhood o
geometrically sharp crack whose tip is moving at speedv t ip ,
computing from this the plastic strain rate according to
phenomenological law of viscoplasticity and, finally, usi
this strain rate to compute the dissipative part of the ene
release rateG(v t ip).

The result of any calculation of this kind necessarily m
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have the property thatG(v t ip) diverges at smallv t ip . In a
static or nearly static stress field like that at the tip of a sl
crack, the viscoplastic energy dissipation occurs at a fi
rate per unit time. ThereforeG(v t ip), the elastic energy re
leased per unit crack extension, must be proportional
1/v t ip asv t ip approaches zero, a manifestly unstable beh
ior. One missing ingredient in the Freund-Hutchinson cal
lation is the shape of the crack tip. Like most theorists in t
field, these authors assumed a geometrically sharp crack
its associated stress singularity, and did not allow their cr
tip to blunt in such a way as to regularize that singularity
is hard to understand, however, how a crack tip in a defo
able, viscoplastic material can remain infinitely sharp.

My dissatisfaction with sharp-tip models of fracture h
been intensified recently by my attempt, in collaborati
with Lobkovsky @9#, to use the cohesive-zone models
Barenblatt@10# and Dugdale@11# for studying the dynamic
response of cracks to bending forces. We concluded
these models are mathematically and/or physically ill pos
The trouble is that the elastic stresses near a sharp tip,
when regularized by cohesive stresses, have features tha
physically unreasonable. The sharp tip is too strong a c
straint to be consistent with the physical forces acting in
neighborhood.

There is yet one more bit of evidence that is relevant.
an earlier paper on the cohesive-zone model, Ching, Nak
ishi, and I@12# pointed out that the stresses near the sharp
of a moving crack always have the property that the tang
tial stress is bigger than the normal~opening! stress. In the
present context, this inequality means that the stress is
ways such that it would cause the tip to become blunt if
sharp-tip constraint were removed. Xu, Needleman, a
Abraham@13# have seen just such an effect in their nume
cal studies using a cohesive-surface scheme in which bl
ing seems to be approximated by tip splitting.

With these considerations in mind, I have explored t
possibility that the curvature of the crack tip is a releva
dynamical variable in brittle fracture. My purpose in th
paper is to show, via a series of approximate calculatio
that the tip-stress puzzle disappears if I assume that the
tion of a crack is governed solely by plastic deformation
the material near its tip. Like Dugdale@11#, I propose that the
1351 ©2000 The American Physical Society
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1352 PRE 62J. S. LANGER
cohesive stress is essentially the same as the plastic
stress. In contrast to the cohesive-zone models@10,11#, how-
ever, the concentrated stress in this theory is regularized
tip blunting instead of by the length of the zone. That is,
radius of curvature of the tip is determined by some mec
nism that resembles plastic flow in its immediate neighb
hood. As I shall show, there is a simple, zero-velocity thre
old for crack motion, and there is no hint of a low-spe
instability.

In presenting this result, I first shall argue that conve
tional treatments of plasticity are inadequate for describ
time-dependent, spatially inhomogeneous deformations
crack tips. Conventional theories couched in terms of yi
criteria, with sharp distinctions between time-dependent
time-independent properties@1,2,4#, cannot describe in any
natural way the wide range of behaviors that occur in
formable solids as they undergo large, rapidly varyi
stresses. Plastic deformation is an inherently dynamic p
nomenon. Strain hardening, the transition between viscoe
tic and viscoplastic behavior at the yield stress, hyster
stress-strain relations, etc., are all dynamic responses to
plied forces. They all should be determined by constitut
equations of motion for some set of variables that desc
the state of the system, both its shape~the displacement field!
and its relevant internal characteristics.

I develop this argument in Sec. II by briefly summarizin
the shear-transformation-zone~STZ! theory that Falk and I
introduced in an analysis of plastic deformation in an am
phous solid@14#. The STZ theory is a specific example of
fully dynamic description of plasticity consistent with m
remarks in the preceding paragraph. It is a ‘‘rate-and-sta
theory~a term used widely in the seismological literature a
in recent theories of friction@15–17#! that contains physi-
cally motivated internal state variables. Although Ref.@14#
deals entirely with a simple model of a noncrystalline ma
rial, I believe that its main conclusions apply also to cryst
line solids when the mean free paths of the mobile defect
impurities, vacancies, dislocations, etc.—are short compa
to the length scales over which deformation and failure
occurring.

Section III, then, is based on work by Lobkovsky a
myself @18# in which we compared predictions of the ST
theory with those of some conventional analyses in a s
tially nonuniform situation. My main purpose in introducin
the latter results is that they let me explore an approxima
that I need for the fracture problem. As I shall emphasi
that approximation is not valid in conventional descriptio
of plasticity. Lobkovsky and I considered a ‘‘toy’’ problem
specifically, an expanding circular hole in a very large, fl
plate with outward tractions~negative pressure! at infinity.
We found a threshold stress above which the hole gro
without bound~a cavitation instability!, and we suggested
that this dynamic behavior might resemble plastic flow n
a crack tip. At stresses below this threshold, we found t
the STZ theory produces a time-independent plastic z
near the hole, but that this zone has conventional prope
only in a limit in which the STZ model becomes perfect
plastic. For STZ parameters that correspond to appreci
strain hardening, we found thinner and smoother pla
zones both below the threshold and in the flowing reg
ld

by
e
-
-
-

-
g
ar
d
d

-

e-
s-
ic
p-

e
e

-

’’

-
-

ed
e

a-

n
,

t

s

r
t
e

es

le
ic
n

above it. It is this picture that I shall invoke in my analysis
the fracture problem.

In Secs. IV and V, I show how the tip-stress puzzle m
be resolved in a dynamic picture of plastic tip blunting.
consider only slow, mode-I fracture. Rather than solve
complete free-boundary problem for the motion of a blun
crack, the best I have been able to do so far—in the spiri
the circular calculations in Sec. III—is to look at a long, thi
elliptical hole in a very large plate, with a uniaxial stre
applied at infinity perpendicular to the long axis of the ho
Like Griffith @19#, I take the limit in which the ratio of the
short axis to the long axis goes to zero, but here I insist t
the curvature at the sharp end, i.e., at the crack tip, rem
finite. For this geometry, I can compute the stress field in
absence of plastic deformation and, from this field, using
approximation developed in Sec. III, estimate the plas
strain rate. Finally, I compute the velocity of the elliptic
boundary, i.e., the rate at which the sharp end of the ellips
advancing and the rate at which its curvature is changing
I make the additional strong assumption that the crack
mains everywhere elliptical throughout this deformatio
then I have a closed set of equations of motion for the d
placement and curvature at the crack tip. The result i
remarkably simple and compact description of brittle fractu
in a deformable material that seems to avoid the inter
inconsistency of conventional theories.

I conclude in Sec. VI with some remarks about vario
aspects of the STZ theory and fracture dynamics.

II. STZ MODEL

In Ref. @14#, Falk and I described both molecula
dynamics simulations and theoretical analyses of pure s
deformations in a two-component, two-dimensional, no
crystalline, Lennard-Jones solid. The simulations reveale
rich variety of behaviors typical of real solids including vi
coelasticity, viscoplasticity, strain hardening, and hystere
An especially important aspect of these simulations was
we could look inside the system to see in detail the irreve
ible molecular rearrangements that occur during plastic
formation. We found that these rearrangements
localized—that small regions which we called ‘‘shear tran
formation zones’’ deform in the direction of the applie
stress. Once deformed, these regions are deactivated;
they are ‘‘jammed’’ and cannot deform further in the sam
direction, but they can return to their previous orientatio
when the stress is reversed.

This two-state nature of the STZ’s explains both t
memory effects and the reason why plastic deformations
limited in size for deviatoric stresses less than a yield str
sy . ~The deviatoric yield stresssy is half the more familiar
uniaxial yield stress.! In an extension of this idea, we inter
preted the change in behavior nearsy as the result of creation
and annihilation of STZ’s at rates proportional to the rate
which plastic work is done on the material. When active n
STZ’s are created as fast as existing ones are deactivated
material continues to deform indefinitely under consta
stress.

Rather than discuss the detailed theoretical interpreta
of the numerical experiments developed in@14#, I present
here only a truncated version of the STZ theory that omit
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stronglys-dependent rate factor that governs memory effe
This truncation is sensible only if we load the system j
once in one direction, but it does not behave properly if
loading is cycled. It will be good enough for present pu
poses but not for all aspects of the fracture problem.~See
remarks in Sec. VI.!

Lobkovsky and I used this approximation in our analy
of the circle problem@18#. We wrote

«̇pl'
1

t
~ls2D!, ~2.1!

where«̇pl is the plastic strain rate~more accurately, the plas
tic rate-of-deformation tensor!, s is the deviatoric stress, an
D is a tensor that describes the anisotropy in the orientat
of the STZ’s. Note that the strain rate is reduced byD. Larger
values ofD indicate that larger numbers of the STZ’s ha
switched into the direction of the shearing deformation a
can no longer undergo forward transitions. WhenD reaches
the valuels, the system becomes ‘‘jammed’’ and the stra
rate vanishes. The parametert simply sets a time scale fo
the system.

Our equation of motion forD is

Ḋ'«̇pl2S «̇pl
•s

lsy
2 D D. ~2.2!

The first term on the left-hand side expresses the fact tha
rate at which the STZ’s are switching is the same as
plastic strain rate and therefore, in the absence of annih
tion and creation of the STZ’s,D grows at the rate«̇pl. An-
nihilation and creation are described by the second te
proportional to the rate of plastic work («̇pl

•s).
To understand what is happening here, consider a

tially uniform system. Fors less than the yield stresssy ,
D(t) has its stable fixed points on the lineD5ls, where
both «̇pl andḊ vanish. In contrast, fors.sy , the stable fixed
points of D are on the lineD5lsy

2/s, where the strain rate

«̇pl does not vanish. In the regions,sy , the material is
viscoelastic; that is, it deforms but does not flow indefinite
in response to the applied stress. Fors!sy , we can neglect
the nonlinear second term in Eq.~2.2! and setD'«pl. Then
Eq. ~2.1! becomes

«̇pl1
1

t
«pl'

l

t
s, ~2.3!

which is equivalent to a simple creep-compliance law w
relaxation timet.

For larger values ofs, but still for s,sy , the relation
between «pl and s becomes nonlinear as well as no
instantaneous. Equations~2.1! and~2.2! can be integrated to
yield

« f inal
pl [«pl~ t→`!52

lsy
2

s
lnS 12

s2

sy
2D . ~2.4!

The conditions leading to Eq.~2.4! are that the system b
initially in a state with«pl5D50, that a stresss,sy be
applied suddenly at timet50, and that the system reach
s.
t
e
-

ns

d
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e
a-

,

a-

final state whereD f inal5ls, Ḋ50. A further calculation
then tells us that«pl(t) approaches« f inal

pl exponentially~like
exp@2t/trelax#) with a relaxation timet relax that diverges as
s→sy :

t relax5
t

12~s/sy!2 . ~2.5!

Equation~2.4! is a strain-hardening curve; that is,« f inal
pl is

the plastic strain produced after an infinitely long time by t
deviatoric stresss. In the limit l→0, with sy held constant,
« f inal

pl vanishes fors,sy but can have any positive value fo
s5sy ; that is, the STZ model becomes ‘‘perfectly plastic
in this limit. The parameterl is a measure of the deviatio
from this ideal behavior. The diverging relaxation time ne
s5sy has no analog in conventional descriptions of str
hardening. Indeed, this interpretation of the hardening cu
is different from that of conventional theories in which su
curves are treated as instantaneous, nonlinear response
tions.

Finally, note that, fors.sy , D→lsy
2/s,

«̇pl→ l

ts
~s22sy

2!>H 2l

t
~s2sy! for s2sy!sy ,

l

t
~s2sy! for s@sy .

~2.6!

Apart from the factor of 2 difference between the smals
and large-s behavior, this is a ‘‘Bingham plastic.’’ In dy-
namic situations at large stress, therefore, the STZ mo
exhibits very nearly conventional viscoplastic behavior.

In short, even this highly truncated version of the ST
theory provides a compact and physically motivated desc
tion of much of plasticity theory, both static and time depe
dent. In just two constitutive relations, Eqs.~2.1! and ~2.2!,
we capture linear viscoelasticity at small stress, strain ha
ening at larger stress, and a dynamic transition to viscop
ticity at a yield stresssy .

III. EXPANDING CIRCULAR HOLE

To make contact between the STZ theory and conv
tional theories of plasticity, and also to gain insight th
might be useful in the crack-tip problem, Lobkovsky and
@18# studied the quasistatic~noninertial! dynamics of a cir-
cular hole in a large plate with outward traction~pressurep
→2s`) at infinity. We assumed plane strain, neglected s
face tension at the boundary of the hole, and, in most of
calculations, assumed incompressible elasticity~Poisson’s
ratio n51/2!. In the case of circular symmetry, with pola
coordinatesr and f, we used the STZ equations~2.1! and
~2.2! with the deviatoric stresss being defined ass
5sff(r )52srr (r ). Similarly, D(r )5Dff(r )52D rr (r ).
Our results were as follows.

When the applied stress at infinity,s` , is not too much
greater thansy , the STZ model is consistent with conven
tional time-independent plasticity theory. That is, for sm
values of the dimensionless quantitylsy , a well-defined
plastic zone forms around the hole. Within that zone,s>sy
and D>lsy . The only difference from most conventiona
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results is that the functions(r ), wherer is the radial distance
from the center of the hole, makes a smooth transition fr
s>sy inside the plastic zone tos;1/r 2 outside—a behavior
that can be recovered in some strain-hardening theories.
transition becomes sharp in the limit of perfect plastici
l→0.

As in conventional time-independent theories, the equi
rium radius of the hole diverges at a threshold stress
, a
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s`
th'H sy2syln~2lsy1sy /m! for 2lsy1sy /m!1,

1/2l for lsy@1,
~3.1!

wherem is the shear modulus andn51/2. Again, this agrees
with the conventional result in the limitl→0. For applied
stresses just slightly larger thans`

th , that is,s`2s`
th!s`

th ,
the radius of the holeR(t) grows exponentially at the rate
Ṙ

R
'H ~2l/t!@112lsyln~lsy!#~s`2s`

th! for sy /m!lsy!1,

~l/t!~s`2s`
th! for sy /m!1!lsy .

~3.2!
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In each of the results shown in Eq.~3.2!, the quantitys`
th has

the value given in the corresponding part of Eq.~3.1!. Using
methods similar to those used to derive Eq.~3.2!, I find, for
sy /m!lsy!1 and for very larges` ,

Ṙ

R
'

l

t
~s`2sy!. ~3.3!

An especially important aspect of these results is that
long as we retain nonzero values ofl, we can work in the
limit m→`. That is, at least for exploratory purposes, we c
neglect elastic displacements in using the STZ model.
relevant dimensionless group of parameters in the S
analysis issy /m, which is of order 0.1 or less for many re
materials. Falk and I@14# found sy /m>0.03 for the two-
dimensional noncrystalline material that we used in our
merical experiments. Thus this theoretical limit, which
shall use here primarily for analytic convenience, may
physically realistic.

Unlike the STZ analysis, conventional theories effective
setl50 at the beginning of the calculation. They then fin
as seen in Eq.~3.1!, that s`

th→` as m→`. Moreover, for
values ofs` just below threshold, conventional theories pr
dict that the ratio of the radius of the outer boundary of
plastic zone,R1, to the radius of the hole,R, is of order
Am/sy, which also diverges in the large-m limit. The reason
for this behavior of the conventional theories is that th
typically allow no plastic deformation outside the plas
zone; thus, the outer displacements required by compatib
must be elastic. If those displacements are constrained b
stiffness of the material, then growth of the hole by plas
flow must likewise be constrained.

The STZ theory is quite different in this regard. Accor
ing to Eq.~3.1!, the large-m threshold remains approximate
at sy except for either very small or very large values oflsy .
For near-threshold values ofs` andsy /m→0, we have@18#

s~r !5sytanhS R2

2lsyr
2D , ~3.4!

which implies thatR1 /R>1/A2lsy. Thus the STZ theory
predicts a smooth and relatively thin plastic zone near
surface of the hole.
s
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With this picture in mind, we can begin to think about
simple approximation for hole growth that might be useful
the fracture problem. Note that, in the purely elastic~non-
plastic! version of the hole problem, force balance and co
patibility, plus the condition that the normal stress vanish
the edge of the hole, imply that the deviatoric stress is

s~r !5s`R2/r 2. ~3.5!

The shear modulusm does not occur here; this formula re
mains valid in the limit of infinite elastic stiffness. Nea
threshold, wheres` is of ordersy , Eq.~3.5! is at least quali-
tatively correct according to Eq.~3.4! for values of lsy
roughly of order unity. Far above threshold, where we
well into the flowing regime described by Eq.~2.6!, D is
small and Eq.~3.5! becomes quantitatively accurate.

Now let us try to estimate the rate of plastic deformati
induced by this stress field atr 5R. As is well known, this is
not a well-posed problem. For any constitutive relation b
tween stress and plastic deformation rate~except a strictly
linear relation with no yield stress!, the stress tensor assoc
ated with Eq.~3.5! is not generally compatible with the vec
tor velocity field that we are trying to compute. We ca
minimize ~but not entirely remove! this difficulty by, first,
using a stress field that is reasonably accurate as arg
above and, second, by using a local form of the constitu
relation. Specifically, start with

Ṙ

R
5 «̇ff

pl ~R!52 «̇ rr
pl~R!5D@s~R!#, ~3.6!

which is an exact formula in this circularly symmetric geom
etry for incompressible plasticity and form→`. Here,D is
an approximate constitutive law, relating deviatoric stre
and the rate of plastic deformation, which must be as sim
as possible in order to be analytically useful.

If we choose

D~s!5H ~l/t!~s2sy! for s.sy ,

0 otherwise,
~3.7!

then, using Eq.~3.5!, we immediately find
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Ṙ

R
>

l

t
~s`2sy!. ~3.8!

This is exactly the same as Eq.~3.3! for larges` , as might
have been expected because Eq.~3.5! is also correct in that
limit. For values ofs` near threshold, Eq.~3.8! is qualita-
tively sensible. The threshold is approximately correct
values oflsy of order unity, and the growth rate vanish
linearly in (s`2sy) with slopel/t. For small values oflsy ,
where the STZ plastic zone is more extended and the de
toric stress at the surface of the hole is substantially less
s` , Eq. ~3.8! underestimates the threshold and overe
mates the growth rate.

There are other schemes that do not work so well.
example, instead of starting with Eq.~3.6!, we can use the
relation between the radial velocityv r and the rate of defor-
mation D: dv r /dr5 «̇ rr

pl52D„s(r )…, and then compute

v r(R)5Ṙ by integrating this relation fromr 5R out to the
edge of the plastic zone whereD vanishes. The result is a
expression forṘ that vanishes quadratically, like (s`2sy)

2

near threshold, and also deviates substantially from Eq.~3.8!
at larges` . These qualitative discrepancies indicate vio
tions of compatibility; they would not occur if the stress~3.5!
were exactly consistent with the constitutive relation~3.7!,
and they disappear if I regain compatibility by settingsy
50. The approximation based on the local formula~3.6!
works well, apparently, because it is not so sensitive to
compatibility violations or to the fact that Eq.~3.7! is not an
accurate version of the STZ model near the outer edge o
plastic zone.

IV. ELLIPTICAL APPROXIMATION FOR CRACK-TIP
DYNAMICS: MATHEMATICAL PRELIMINARIES

My strategy now is to use the approximations develop
in the preceding section in an analysis of a highly elonga
elliptical—rather than circular—hole, and in this way to e
plore the effects of tip blunting in fracture dynamics as o
lined in the Introduction. As mentioned there, the idea is
compute the instantaneous rate of deformation of the ell
due to plastic displacements and then to assume that
deforming hole remains elliptical in order to compute sub
quent motion.

The first step is to compute the stresses in the neigh
hood of the hole, in analogy to the~much shorter! calculation
that leads to Eq.~3.5!. The elliptical version of this calcula
tion, for the case of zero surface tension, can be found
Muskhelishvili @20#. We need Muskhelishvili’s results fo
the case in which the stress infinitely far from the hole,s`

~‘‘ p’’ in Muskhelishvili’s notation! is oriented along they
axis in thex,y plane.

To start, make the conformal transformation from Car
sian coordinates (x,y) to elliptical coordinates~r,u!:

x5WS r1
m

r D cosu, y5WS r2
m

r D sinu. ~4.1!

Curves of constantr are ellipses, and curves of constantu
are orthogonal hyperbolas. If we take the boundary of
elliptical hole to be atr51, then the semimajor and semim
r
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nor axes of the ellipse have lengthsW(11m) and W(1
2m), respectively. We take 0,m,1 so that the long axis
of the ellipse lies in thex direction, perpendicular to the
applied stress, in analogy to a mode-I crack.

These elliptical coordinates provide an orthogonal ba
for a representation of the stress tensors. Mushkelishvili’s
results are

srr1suu5s`ReF11
2~11m!e22iu

r22me22iu G ~4.2!

and

S~r,u![suu2srr12isru

5
s`r2e2iu

~r22me2iu!
F12

e22iu

mr2
1

~11m!e22iu

~r22me22iu!2
M ~r,u!G ,

~4.3!

where

M ~r,u!5
r2

m
~122me22iu1m2!1e22iu~122me2iu1m2!.

~4.4!

The deviatoric stress has components

suu52srr5
1

2
ReS~r,u!, sru5

1

2
Im S~r,u!. ~4.5!

To produce a long, thin ellipse, letW become larger than
any other length scale in the system, and fixm<1 so that the
curvatureKt ip at the tip, that is, atx5W(11m), remains
finite. Then a calculation to leading order inW21/2 yields

m'12A 2

Kt ipW
. ~4.6!

Throughout what follows, the symbol' denotes the large-W
limit.

We can see in more detail what is happening near
crack tip by looking at the stress along thex axis. Setu50 in
Eq. ~4.1! and solve forr as a function of the distance from
the tip, x̃5x2W(11m). The result is

r~u50!'11
1

AW
F S x̃1

1

2Kt ip
D 1/2

2S 1

2Kt ip
D 1/2G . ~4.7!

For very largeW and for x̃!W, Eq. ~4.2! and~4.3! produce

syy~ x̃,y50!'
3s`AW

2~ x̃11/2Kt ip!1/2
1

s`AW

2Kt ip~ x̃11/2Kt ip!3/2
.

~4.8!

Only the first term on the right-hand side of Eq.~4.8! con-
tributes to the asymptotic behavior forKt ipx̃@1; therefore
the mode-I stress-intensity factor must beKI

5(3/2)s`ApW. When we take the limit of largeW, we
must lets` become small so thatKI remains fixed.
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In order to determine the motion of the elliptical crack ti
we need to computevn(u), the normal velocity of the mate
rial on the surfacer51, and the rate of change of the curv
ture of this surface,K̇(u), near the tip, that is, nearu50.
There is a simple relation betweenvn and K̇, valid for any
curve @21#:

K̇52K 2vn2
]2vn

]w2 , ~4.9!

wherew is the displacement along the curve, andK andvn
are chosen to be positive when the curve bends to the
and vn points to the right asw increases. The relation be
tweenw and the elliptical coordinateu is

1

W2 S dw

du D 2

5r2S 11
m2

r4 D22m cos 2u'
2

Kt ipW
14u2,

~4.10!

the final expression being valid forr51 and largeW. Com-
bining the last two results, we find

2
K̇t ip

K t ip
2

5vn~0!1
1

2K t ipW

]2vn

]u2 U
u50

. ~4.11!

The quantityvn(0) is equal tov t ip , the speed at which the
tip of the crack is advancing.

From these last several equations, we see thatu is small of
orderW21/2 for values ofKt ipw of order unity, which is the
region of interest. Thus, we need to keepu in our equations
only when it occurs in the combinationAWu, and we need to
keep only terms up to orderu2 for computingK̇t ip in Eq.
~4.11!. We can then make similar simplifications in the fo
mula ~4.3! for the deviatoric stress. I find

suu52srr'2s`AW S h0
2

h3D F124Wu2S 2

h2 2
1

h0
2D G ~4.12!

and

sru'
4s`AW

h4 ~h22h0
2!AWu, ~4.13!

where

h5~r22m!AW ~4.14!

and

h05h~r51!5A 2

Kt ip
~4.15!

is the value ofh at the crack surface.
The pair of equations~4.12! and ~4.13! is the analog of

Eq. ~3.5! for the elliptical crack tip. The next step is to de
duce a useful analog of the rate equation~3.6!. To do this,
start with the expressions for the rate-of-deformation ten
D in terms of the material velocity componentsvr and vu
@22#:
ft

r

Drr5
1

WNS ]vr

]r
1

vu

r

1

N

]N

]u D , ~4.16!

Duu5
1

WNr S ]vu

]u
1

vr

r

1

N

]

]r
~rN! D , ~4.17!

and

Dru5
1

2WNS 1

r

]vr

]u
1

]vu

]r
2

vu

r
2

vr

N

]N

]u
2

vu

N

]N

]r D ,

~4.18!

where

N2~r,u!511
m2

r4 2
2m

r2 cos 2u ~4.19!

is the same quantity that occurs in the metric equation~4.10!.
Dimensional analysis plus symmetry aboutu50 implies

that we can writevr andvu in the form

vr~r,u!5 ṽr~h,u!'a~h!F11Wu2S a

h2 1
b

h0
2D G , ~4.20!

vu~r,u!'b~h!AWu, ~4.21!

where the functionsa~h! and b~h!, and the numerical con
stantsa and b, are to be determined. With these definitio
and in the large-W limit,

Drr'
2

h S 12
2Wu2

h2 D S ] ṽr

]h
1

2bWu2

h2 D , ~4.22!

Duu'
1

h S 12
2Wu2

h2 D Fb1
2ṽr

h S 12
4Wu2

h2 D G , ~4.23!

and

Dru'
1

h F 1

2AW

] ṽr

]u
1S ]b

]h
2

1

h2 ~2a1bh! D uAWG .

~4.24!

V. ELLIPTICAL APPROXIMATION FOR CRACK-TIP
DYNAMICS: APPLICATIONS

As a first exercise in the application of these formula
consider the case of linear viscoplasticity with a rate-
deformation tensorD equal to (l/t)s and vanishing yield
stress. For this special situation, compatibility is automa
cally satisfied. If we have an elliptical hole at some mome
we can calculate its instantaneous growth rate exactly.~This
is not to say that the hole necessarily remains elliptica
later times.! At u50,

Drr'
2

h

da

dh
52

2l

t
s`AW

h0
2

h3 ~5.1!

and

Duu'
1

h2 ~2a1bh!51
2l

t
s`AW

h0
2

h3 . ~5.2!
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In both of these equations, the first forms ofD come from
Eqs. ~4.22! and ~4.23!, i.e., from geometry, and the secon
from our viscoplastic constitutive relation and the Muskh
ishvili solutions for the stress in Eq.~4.12!. It follows from
Eq. ~5.1! that

a~h!5
l

t
s`AW

h0
2

h
, ~5.3!

and then from Eq.~5.2! that b~h!50. To compute the con
stantsa andb, use the expressions~4.24! and ~4.13! for the
off-diagonal element ofD:

Dru'
uAW

h
a~h!S a22

h2 1
b

h0
2D

5
4l

t

s`AW

h4
~h22h0

2!uAW. ~5.4!

Equating coefficients ofh22 andh24, we havea522 and
b54. Thus,

ṽr~h,u!5
l

t
s`AW

h0
2

h F112Wu2S 2

h0
2 2

1

h2D G . ~5.5!

To check compatibility, we can use Eq.~5.5! to evaluateDrr

in Eq. ~4.22! and confirm that we recover the full
u-dependent expression for (l/t)srr as given by Eq.~4.12!.

Settingh5h0 in Eq. ~5.5!, we have

vn~u!5
l

t
s`A2W

Kt ip
~11K t ipWu2!, ~5.6!

from which we find

v t ip5
l

t
s`A2W

Kt ip
~5.7!

and, using Eq.~4.11!,

K̇t ip52
2l

t
s`A2WK t ip

3/2 . ~5.8!

Apart from numerical factors, both of these results can
obtained just from dimensional analysis. The parametel
has the dimensions of inverse stress. The applied stress
occur only in the combinations`AW; W cannot appear oth
erwise, andK 21 is the only other length scale in the pro
lem. Thus, the right-hand side of Eq.~5.7! is the only group
of parameters that can have the dimensions of velocity
similar argument yields Eq.~5.8!.

This model, with no yield stress, clearly is describing
ductile material. Equations~5.7! and ~5.8! tell us thatv t ip
increases andKt ip decreases with time, which means that t
crack tip blunts until the sharp-tip approximation (Kt ipW
@1) becomes invalid. The long, thin ellipse grows out
become an expanding circle.~See@23# for a stability analysis
of the growing circular hole.!

Equations~5.7! and~5.8! give us the tip velocity and rate
of change of the curvature at some instant of time for sp
fied values ofKt ip andW. We also know thatv t ip'2Ẇ. For
-

e

an

A

i-

present purposes, and especially in the next applicat
where we shall find steady-state crack motion, it is usefu
assume that the quantitys`AW remains constant, that is
thats` varies in such a way as to determine a fixed value
the stress-intensity factor.

It is especially interesting that, becauseb~h!50 in Eq.
~5.2!, the angular velocityvu vanishes near the crack tip. Th
plastic flow, at least in this particular case, is purely radial
related feature of these results is that Eq.~5.6! can be written
in the form

vn~u!>
l

t

suu~1,u!

K~u!
, ~5.9!

whereK~u!, the curvature of the elliptical crack surface, is

K~u!5
12m2

WN3/2~1,u!
'Kt ip~123K t ipWu2!. ~5.10!

That is, we obtain a correct expression for the normal vel
ity vn(u) if we use the formula~3.6! for rate of deformation
in the circle problem and simply replace the strain rate«̇ff

pl

by Duu(1,u) and the radiusR by the local radius of curvature
K 21(u).

It follows that a plausible generalization of Eq.~5.9! for
nonzero yield stress, the analog of Eqs.~3.6!–~3.8!, is

vn~u!>H ~l/t!K 21~u!@suu~1,u!2sy# for suu.sy ,

0 otherwise,
~5.11!

and therefore, forsuu(1,u).sy ,

vn~u!'
l

t
s`A2W

Kt ip
F S 12

sy

s`A2WKt ip
D

1K t ipWu2S 12
3sy

s`A2WKt ip
D G . ~5.12!

For Kt ip.sy
2/(2Ws`

2 ), that is,suu(1,0).sy ,

v t ip>
l

t S s`A2W

Kt ip
2

sy

Kt ip
D , ~5.13!

and, with Eq.~4.11!,

K̇t ip>
2l

t
~2s`A2WK t ip

3/212syKt ip!. ~5.14!

The presence of a nonzerosy completely changes the na
ture of these results from what we found in Eqs.~5.7! and
~5.8!. Equation~5.14! has a stable fixed point at a nonze
value of the tip curvature, say, atKt ip5Kt ip* , where

Kt ip* 5
2sy

2

Ws`
2

. ~5.15!

@Note thatKt ip* is larger than the minimum value ofKt ip

consistent with suu(1,u).sy .# The tip blunts—Kt ip
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1358 PRE 62J. S. LANGER
decreases—when Kt ip.Kt ip* , and it sharpens—Kt ip

increases—whenKt ip,Kt ip* . The steady-state tip speed
therefore

v t ip* 5v t ip~Kt ip* !>
l

t

s`
2 W

2sy
. ~5.16!

As advertised in the Introduction, the tip-stress puzzle
disappeared. In the absence of surface tension, the thres
for crack advance is ats`50. Above this threshold,v t ip

rises linearly as a function ofs`
2 W, a quantity that is pro-

portional to the energy release rateG in the purely elastic
case. This is brittle behavior. For any nonzero yield stre
plastic deformation is localized near the tip, and the cra
finds a stable shape at which it advances steadily.

Moreover, as the driving force and the tip speed increa
the crack becomes blunter according to Eq.~5.15!. This is a
natural feature of the crack-shape dynamics in which
curvatureKt ip controls the stress concentration at the tip.
larger s` , less concentration is needed in order for the
stress to reach values in the neighborhood ofsy , and the
curvature decreases. It is interesting to speculate that
dynamic blunting might lead to a branching instability
large crack speeds—a possibility that is well beyond
range of the present analysis.

The simplicity of the approximation~5.11! makes it
possible to include surface tension in this analysis w
only a little extra effort. In principle, we need to modif
Muskhelishvili’s calculation so that, instead of setting t
normal stresssrr equal to zero at the surface of the ellips
we use

srr~1,u!5gK~u!, ~5.17!

whereg is the surface tension. In practice, this is a ma
project. I believe that the problem is analytically solvab
and hope to report results in a subsequent publication.
present purposes, however, we do not need so detaile
analysis.

Because Muskhelishvili’s calculation uses only line
elasticity, the resulting stress field is the sum of two term
one proportional tos` as shown in Eqs.~4.2! and~4.3!, and
a second proportional tog. The new term is an additive
contribution tosuu(1,u) in Eq. ~5.11!. Dimensional analysis
tells us that the new expressions forv t ip andK̇t ip must have
the form

v t ip>
l

t S s`A2W

Kt ip
2

sy

Kt ip
2cg D ~5.18!

and

K̇t ip>
2l

t
~2s`A2WK t ip

3/212syKt ip2dgK t ip
2 !, ~5.19!

wherec andd are purely numerical coefficients. In the ca
of linear viscoplasiticity withsy50, the stress field including
surface tension would still be fully compatible; therefo
these results would be exactly correct and the values ofc and
d would emerge from a calculation analogous to that wh
s
old

s,
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h

led to Eq.~5.5!. Whensy is nonzero, the dimensional argu
ment is valid only within the approximation~5.11!.

To see what these equations mean, define a dimension
parameterk* at the dynamical fixed point:

k* 5
g

s`
AKt ip*

2W
. ~5.20!

Setting the right-hand side of Eq.~5.19! to zero, we find

k* 5k* ~g!5
1

2d SA11
4d

g
21D , ~5.21!

and, according to Eq.~5.18!, the steady-state crack speed

v t ip* 5
lg

t S 1

k*
2c2

1

2gk* 2D . ~5.22!

Here

g5
Ws`

2

gsy
~5.23!

is a dimensionless group of parameters that is proportiona
the energy release rateG. The combination of Eqs.~5.21!
and ~5.22! tells us thattv t ip* /gl is a universal function ofg
that rises linearly from zero at some threshold value ofg ~a
numerical constant! and, consistent with Eq.~5.16!, ap-
proachesg/2 for largeg. For example, ifc50.5 andd51,
the result is almost indistinguishable from the straight li
tv t ip* /gl>(g21.3)/2. Apart from the nonzero threshold, th
surface tension produces no qualitative changes, in part
lar, no transition from brittle to ductile behavior except
sy50. Note also that, at threshold,Kt ip* ;sy /g and, with Eq.
~4.12!, suu(1,0);sy . As expected,Kt ip has adjusted dy-
namically so that the concentrated stress at the tip is pro
tional to the plastic yield stress.

VI. DISCUSSION

I conclude with some remarks about the nature of the S
theory and how it may relate to fracture dynamics.

The first point to emphasize is the uncertainty of the a
proximation ~5.11!. Although the analogous approxima
tion seems roughly accurate in the circle problem for so
range of values oflsy near unity, it could be entirely in-
correct for the crack tip. So far as I can see, the only way
test this approximation and the conclusions I draw from
is by numerical analysis. Such a project is high on my p
ority list.

A different kind of uncertainty is whether the STZ versio
of plasticity theory is necessary for the picture of crack-
dynamics presented here or whether qualitatively the sa
behavior and the same solution of the tip-stress puzzle m
be obtained with conventional theories. I needed the S
model as justification for the approximation~5.11!, without
which I could not make progress analytically. I suspect, ho
ever, that the physics of the STZ model is playing more th
just a technically convenient role. As discussed in Sec.
one important difference between the STZ model and c
ventional theories is that it predicts a smooth transition fr
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viscoplasticity inside the plastic zone to viscoelasticity o
side. Compatibility therefore does not require so large a
rigid a plastic zone surrounding the crack tip as is predic
by conventional theories. The comparatively smooth and
plastic zone in the STZ model is controlled by the quan
lsy , which may be of order unity, as opposed to the or
narily very small ratiosy /m in conventional theories. The
approximation~5.11! makes sense only if we can take th
limit sy /m→0 while keeping nonzero values of the strai
hardening parameterl.

A related issue has to do with energy balance. In
Griffith analysis @19#, the stored elastic energy per un
length of the sample is of orderGel;s`

2 L/m, whereL is
some macroscopic length, say, the width of a very long s
along whose centerline the crack is advancing.~In our ellip-
tical calculations with infinitely distant boundaries in all d
rections, the quantityW plays the role of this macroscopi
length.! The stored elastic energy vanishes in the limitm→`,
but that limit is permissible only because there are ot
degrees of freedom in the system that account for displa
ments of the material. In particular, if the STZ viscoelas
law ~2.3! remains valid down to arbitrarily small stress, th
the work done in loading the strip is proportional toGpl

;ls`
2 L. This is much bigger thanGel if, as we have as-

sumed,ml@1. Note that this assumption is exactly oppos
to that of Freund and Hutchinson@8#, whose analysis was
limited to situations in whichGel@Gpl.

There remains an interesting issue here. In conventio
interpretations,Gpl is nonrecoverable energy, unavailable f
creating new fracture surfaces. That is not necessarily
case for the STZ model. Consider the example of a s
expanding uniformly under negative pressure, perhaps
plate discussed in Sec. III without the hole in it. In additi
to purely elastic expansion, there may be vacancy format
or vacancies may diffuse in from the surface. This is a k
of irreversible bulk plasticity; the vacancies do not instan
neously disappear when the system is unloaded, and the
does not immediately recover its initial shape. However,
the system comes to equilibrium, the vacancies may fin
energetically and kinetically favorable to coalesce and fo
voids, so that part of their stored energy is converted to n
surface energy. I suspect that the shear transformation z
are playing a similar role—that they are created or reorien
in the deforming region ahead of the crack tip, and that p
of the plastic work done in this process is converted to s
face energy as the crack advances.

This picture becomes even more interesting and comp
in the full STZ theory @14#, where a strongly stress
dependent rate factor produces hysteretic effects. Per
the most important advantage of the STZ theory, one wh
we have not exploited here, is that plastically deform
regions of a material are characterized not just by displa
ment fields but also by the state variableD. The rate factor in
the full theory effectively vanishes at small stress; the ma
rial creeps on extremely long time scales. Thus,D remains
nearly zero when a previously undeformed material is s
jected to a small stress. On the other hand, when a stro
deformed material is unloaded,D remains at whatever valu
it reached during the deformation. That residual value ofD is
the means by which the system ‘‘remembers’’ its history
determines how the system responds to subsequent load
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In fracture, the hardened material left along the crack, in
wake of the plastic zone, will be described by nonzero val
of D.

This strongly stress-dependent rate factor in the S
theory has another implication for fracture analysis. The v
coelastic law~2.3! is not strictly valid far ahead of the crac
tip unless the system is everywhere so highly stressed
given so long an equilibration time that the missing rate f
tor is unimportant. In realistic situations, therefore, energy
stored elastically in distant regions where the stress is sm
enough that the viscoelastic response cuts off. As usual,
the elastic energy that ultimately drives fracture. In ca
where the plastic dissipation rate is comparable to or sma
than the bare fracture energy, the behavior is likely to
highly sensitive to details of the plastic constitutive laws. O
the other hand, iflm@1 and plastic dissipation is dominan
then some generalization of the infinite-m calculation pre-
sented here should be accurate.

Finally, there are two basic questions to which I ha
alluded only briefly so far. First, what has happened to
brittle-ductile transition, which we have seen here only
sy50? The mathematical signature of ductility in this theo
would be the disappearance of the fixed point curvat
Kt ip* so that, as in Eq.~5.8!, the tip blunts indefinitely. That
might happen for some or all values of the driving forc
for nonzerosy . One possibility is that such a mechanis
has been lost here in the approximation~5.11!. Another is
that the extreme stiffness implied by them→` limit sup-
presses ductility. Both possibilities may simultaneously
correct.

Second, there is the question of whether or when t
picture of crack-tip dynamics governed by plasticity mig
be valid. At first glance, we might guess that the picture
plausible only for highly deformable materials with smallsy
where plastic flow in the neighborhood of a crack tip mig
resemble fluid flow near a viscous finger@24#. I suggest that
the picture is much more generally correct, at least as lon
I am allowed to adopt a liberal interpretation of the ter
‘‘plastic deformation.’’

Falk’s recent molecular dynamics simulations@25# of
brittle fracture in amorphous solids clearly show crack t
that are blunt on scales of roughly ten atomic spacings
significant amounts of STZ activity near these tips. Even
simulations of Zhouet al. @26# and of Marder and co-
workers @27# show molecular rearrangements and blunti
on the scale of a few atomic spacings at the tips of crack
defect-free crystalline solids. I do not suggest, for either
these cases, that the molecular rearrangements near the
tip are accurately described by any continuum theory of p
ticity. Nevertheless, the idea that dynamic blunting brin
the stress at the tip down to values of ordersy seems to make
sense, whether or not the continuum approximation is qu
titatively correct.

As pointed out at the end of Sec. V, near threshold,Kt ip* is
proportional tosy /g, a quantity that is small in easily de
formable materials wheresy is small. On the other hand, i
we take the Dugdale assumption literally, thensy is the co-
hesive stress, andg is equal tosy times the range of the
cohesive forces. In this case,Kt ip* is of the order of inverse
atomic spacings. While the continuum approximation can
be strictly correct at such small length scales, its predictio
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1360 PRE 62J. S. LANGER
consistent with our physical picture of the characteris
sharpness of crack tips. We may see here a way to bridge
gap between the present picture of fracture in deforma
materials and Marder’s suggestion@28# that, in rigid single
crystals, the length scale at which stress is regularize
simply the atomic spacing.

In short, I argue that the tip-stress puzzle becomes a n
issue if we include the tip curvature as a relevant degre
freedom near the crack tip. It follows, I believe, that th
degree of freedom is an essential ingredient in theories
dynamic fracture.
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