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Viscoplasticity and the dynamics of brittle fracture
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| propose a model of fracture in which the curvature of the crack tip is a relevant dynamical variable and
crack advance is governed solely by plastic deformation of the material near the tip. This model is based on a
rate-and-state theory of plasticity introduced in earlier papers by Falk, Lobkovsky, and myself. In the approxi-
mate analysis developed here, fracture is brittle whenever the plastic yield stress is nonzero. The tip curvature
finds a stable steady-state value at all loading strengths, and the tip stress remains at or near the plastic yield
stress. The crack speed grows linearly with the square of the effective stress intensity factor above a threshold
that depends on the surface tension. This result provides a possible answer to the fundamental question of how
breaking stresses are transmitted through plastic zones near crack tips.

PACS numbgs): 46.05+b, 62.20.Fe, 62.20.Mk

I. INTRODUCTION have the property thaB(vy,) diverges at smalb,. In a
static or nearly static stress field like that at the tip of a slow
Among the most intriguing puzzles in nonequilibrium ma- crack, the viscoplastic energy dissipation occurs at a fixed
terials physics is the question of how brittle fracture canrate per unit time. Therefor€(vy;,), the elastic energy re-
occur in viscoplastic solids. Simply stated, most solids flowleased per unit crack extension, must be proportional to
plastically at some yield stress and therefore cannot sup- 1/v, asvy, approaches zero, a manifestly unstable behav-
port steady stresses larger than this value. Howeseis  ijor. One missing ingredient in the Freund-Hutchinson calcu-
ordinarily assumed to be smaller than the cohesive stredation is the shape of the crack tip. Like most theorists in this
needed to break bonds at the tip of a crack. How then can thigeld, these authors assumed a geometrically sharp crack with
breaking stress be transmitted through the plastic zone neis associated stress singularity, and did not allow their crack
the tip? This question reveals a deep inconsistency betweip to blunt in such a way as to regularize that singularity. It
conventional theories of plasticity on the one h@®] and is hard to understand, however, how a crack tip in a deform-
conventional descriptions of brittle fracture on the otherable, viscoplastic material can remain infinitely sharp.
[3,4]. My dissatisfaction with sharp-tip models of fracture has
One recent attempt to solve the tip-stress puzzle is theeen intensified recently by my attempt, in collaboration
strain-gradient theory of Flecst al. [5—7]. The idea here is with Lobkovsky [9], to use the cohesive-zone models of
that the tangle of dislocations made geometrically necessam@arenblatt{10] and Dugdalg 11] for studying the dynamic
by the strong strain gradients at the crack tip hardens theesponse of cracks to bending forces. We concluded that
material in that region, permitting large stresses to reach ththese models are mathematically and/or physically ill posed.
tip. This picture cannot be entirely satisfactory; the sameThe trouble is that the elastic stresses near a sharp tip, even
phenomena occur in noncrystalline materials where the disvhen regularized by cohesive stresses, have features that are
location mechanism is not relevant. Moreover, the geometriphysically unreasonable. The sharp tip is too strong a con-
necessity of dislocations in a deformed material depends ostraint to be consistent with the physical forces acting in its
the assumption that crystalline order persists and bends witheighborhood.
the overall deformation, instead of dissolving and reforming There is yet one more bit of evidence that is relevant. In
in new directions. It is not cleato me which of these an earlier paper on the cohesive-zone model, Ching, Nakan-
pictures is most accurate in the strong stress field near ighi, and 1[12] pointed out that the stresses near the sharp tip
moving crack tip. of a moving crack always have the property that the tangen-
Some years ago, Freund and HutchinE®h(FH) pursued tial stress is bigger than the norm@pening stress. In the
a different line of argument. They used the fact that, in vis-present context, this inequality means that the stress is al-
coplastic materialsideviatorig stresses abovg, drive plas-  ways such that it would cause the tip to become blunt if the
tic strainrates(not just strainswhich, although not sustain- sharp-tip constraint were removed. Xu, Needleman, and
able in purely stationary situations, cause only finiteAbraham[13] have seen just such an effect in their numeri-
deformations in the transitory neighborhood of a movingcal studies using a cohesive-surface scheme in which blunt-
crack tip. The FH calculation consists simply of taking theing seems to be approximated by tip splitting.
well-known formula for the stresses in the neighborhood of a With these considerations in mind, | have explored the
geometrically sharp crack whose tip is moving at spegg, possibility that the curvature of the crack tip is a relevant
computing from this the plastic strain rate according to adynamical variable in brittle fracture. My purpose in this
phenomenological law of viscoplasticity and, finally, using paper is to show, via a series of approximate calculations,
this strain rate to compute the dissipative part of the energyhat the tip-stress puzzle disappears if | assume that the mo-
release rat&(vyp). tion of a crack is governed solely by plastic deformation of
The result of any calculation of this kind necessarily mustthe material near its tip. Like Dugdd]l&1], | propose that the
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cohesive stress is essentially the same as the plastic yielbove it. It is this picture that | shall invoke in my analysis of
stress. In contrast to the cohesive-zone modidsl 1, how-  the fracture problem.

ever, the concentrated stress in this theory is regularized by In Secs. IV and V, | show how the tip-stress puzzle may
tip blunting instead of by the length of the zone. That is, thebe resolved in a dynamic picture of plastic tip blunting. |
radius of curvature of the tip is determined by some mechaconsider only slow, mode-I| fracture. Rather than solve a
nism that resembles plastic flow in its immediate neighborcomplete free-boundary problem for the motion of a blunted
hood. As | shall show, there is a simple, zero-velocity threshcrack, the best | have been able to do so far—in the spirit of

old for crack motion, and there is no hint of a low-speedthe circular calculations in Sec. lll—is to look at a long, thin,
instability. elliptical hole in a very large plate, with a uniaxial stress

applied at infinity perpendicular to the long axis of the hole.

In presenting this result, | first shall argue that conven-=! o, S . .
tional treatments of plasticity are inadequate for describin ike G”ﬁ'th [19], | take _the limit in which the ratlo_of _the
port axis to the long axis goes to zero, but here | insist that

time-dependent, spatially inhomogeneous deformations ne . . i
i ) ; . . e curvature at the sharp end, i.e., at the crack tip, remain

crack tips. Conventional theories couched in terms of yield. : . T
criteria, with sharp distinctions between time-dependent an nite. For this gepmetry, ! can compute the §trgss f|elq in the
o . O bsence of plastic deformation and, from this field, using the
time-independent propert|e{3,2,4], cannot describe in any approximation developed in Sec. lll, estimate the plastic
natural way the wide range of behaviors that occur in dexain rate. Finally, | compute the velocity of the elliptical
formable solids as they undergo large, rapidly varyingpoundary, i.e., the rate at which the sharp end of the ellipse is
stresses. Plastic deformation is an inherently dynamic phe;gyancing and the rate at which its curvature is changing. If
nomenon. Strain hal’denlng, the transition between V|Scoe|a$'make the additiona' Strong assumption that the Crack re-
tic and viscoplastic behavior at the yield stress, hysteretignains everywhere elliptical throughout this deformation,
stress-strain relations, etc., are all dynamic responses to aghen | have a closed set of equations of motion for the dis-
plied forces. They all should be determined by constitutiveplacement and curvature at the crack tip. The result is a
equations of motion for some set of variables that describeemarkably simple and compact description of brittle fracture
the state of the system, both its shdjte displacement fieJd in a deformable material that seems to avoid the internal
and its relevant internal characteristics. inconsistency of conventional theories.

| develop this argument in Sec. Il by briefly summarizing | conclude in Sec. VI with some remarks about various
the shear-transformation-zori8T2) theory that Falk and | aspects of the STZ theory and fracture dynamics.
introduced in an analysis of plastic deformation in an amor-
phous solid14]. The STZ theory is a specific example of a
fully dynamic description of plasticity consistent with my
remarks in the preceding paragraph. It is a “rate-and-state” |n Ref. [14], Falk and | described both molecular-
theory(a term used widely in the seismological literature anddynamics simulations and theoretical analyses of pure shear
in recent theories of frictiod15—17]) that contains physi- deformations in a two-component, two-dimensional, non-
cally motivated internal state variables. Although Rdf4]  crystalline, Lennard-Jones solid. The simulations revealed a
deals entirely with a simple model of a noncrystalline mate-rich variety of behaviors typical of real solids including vis-
rial, | believe that its main conclusions apply also to crystal-coelasticity, viscoplasticity, strain hardening, and hysteresis.
line solids when the mean free paths of the mobile defects—An especially important aspect of these simulations was that
impurities, vacancies, dislocations, etc.—are short comparede could look inside the system to see in detail the irrevers-
to the length scales over which deformation and failure argble molecular rearrangements that occur during plastic de-
occurring. formation. We found that these rearrangements are

Section lll, then, is based on work by Lobkovsky and localized—that small regions which we called “shear trans-
myself[18] in which we compared predictions of the STZ formation zones” deform in the direction of the applied
theory with those of some conventional analyses in a spastress. Once deformed, these regions are deactivated; i.e.,
tially nonuniform situation. My main purpose in introducing they are “jammed” and cannot deform further in the same
the latter results is that they let me explore an approximatiowlirection, but they can return to their previous orientations
that | need for the fracture problem. As | shall emphasizewhen the stress is reversed.
that approximation is not valid in conventional descriptions This two-state nature of the STZ's explains both the
of plasticity. Lobkovsky and | considered a “toy” problem, memory effects and the reason why plastic deformations are
specifically, an expanding circular hole in a very large, flatlimited in size for deviatoric stresses less than a yield stress
plate with outward tractiongnegative pressuyeat infinity. s, . (The deviatoric yield stress, is half the more familiar
We found a threshold stress above which the hole growsniaxial yield stresg.In an extension of this idea, we inter-
without bound(a cavitation instability, and we suggested preted the change in behavior negias the result of creation
that this dynamic behavior might resemble plastic flow neamand annihilation of STZ’s at rates proportional to the rate at
a crack tip. At stresses below this threshold, we found thatwhich plastic work is done on the material. When active new
the STZ theory produces a time-independent plastic zon&8TZ's are created as fast as existing ones are deactivated, the
near the hole, but that this zone has conventional propertiesaterial continues to deform indefinitely under constant
only in a limit in which the STZ model becomes perfectly stress.
plastic. For STZ parameters that correspond to appreciable Rather than discuss the detailed theoretical interpretation
strain hardening, we found thinner and smoother plastiof the numerical experiments developed[it¥], | present
zones both below the threshold and in the flowing regiorhere only a truncated version of the STZ theory that omits a

Il. STZ MODEL
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stronglys-dependent rate factor that governs memory effectsinal state whereAi,,=\s, A=0. A further calculation
This truncation is sensible only if we load the system justihen tells us thatP'(t) approaches?! . exponentially(like

once in one direction, but it does not behave properly if theexn:_t/Trelax]) with a relaxation timer,q s, that diverges as

loading is cycled. It will be good enough for present pur-

poses but not for all aspects of the fracture probl¢Bee
remarks in Sec. VJ.

Lobkovsky and | used this approximation in our analysis

of the circle probleni18]. We wrote

gp'ml(xs—m (2.1
= , .

whereeP?' is the plastic strain ratémore accurately, the plas-
tic rate-of-deformation tensprs is the deviatoric stress, and
N
of the STZ’s. Note that the strain rate is reduced\by arger
values ofA indicate that larger numbers of the STZ's hav
switched into the direction of the shearing deformation an
can no longer undergo forward transitions. Whemeaches
the valuers, the system becomes “jammed” and the strain
rate vanishes. The parametesimply sets a time scale for
the system.

s
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2
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Equation(2.4) is a strain-hardening curve; that ig, , is
the plastic strain produced after an infinitely long time by the
deviatoric stress. In the limit \—0, with s, held constant,
&Pl ., vanishes fos< s, but can have any positive value for
s=sy; that is, the STZ model becomes “perfectly plastic”
in this limit. The parametek is a measure of the deviation

"ffom this ideal behavior. The diverging relaxation time near

s=s, has no analog in conventional descriptions of strain
ardening. Indeed, this interpretation of the hardening curve

4; different from that of conventional theories in which such

curves are treated as instantaneous, nonlinear response func-
tions.
Finally, note that, fois>s,, A—\s/s,
2\
. N T(S_ Sy) for s—s,<s,,
el —(s?-5)) = (2.6
7S

;(s— s,) for s>s,.

Our equation of motion foA is
The first term on the left-hand side expresses the fact that the
rate at which the STZ's are switching is the same as thépart from the factor of 2 difference between the snsall-
plastic strain rate and therefore, in the absence of annihileand larges behavior, this is a “Bingham plastic.” In dy-

tion and creation of the STZ’'s\ grows at the rateP'. An-

namic situations at large stress, therefore, the STZ model

nihilation and creation are described by the second tern£Xhibits very nearly conventional viscoplastic behavior.

proportional to the rate of plastic worle{'-s).
To understand what is happening here, consider a sp

In short, even this highly truncated version of the STZ
é_beory provides a compact and physically motivated descrip-

tion of much of plasticity theory, both static and time depen-
dent. In just two constitutive relations, Eq&.1) and(2.2),

we capture linear viscoelasticity at small stress, strain hard-
ening at larger stress, and a dynamic transition to viscoplas-
ticity at a yield stress, .

tially uniform system. Fors less than the yield stress,,
A(t) has its stable fixed points on the lile=\s, where
botheP' andA vanish. In contrast, fos>s,, the stable fixed
points of A are on the Iinedz)\sils, where the strain rate

¢P' does not vanish. In the regios<<s,, the material is
viscoelastic; that is, it deforms but does not flow indefinitely
in response to the applied stress. Bets,, we can neglect
the nonlinear second term in E@.2) and setA~¢P'. Then
Eq. (2.1) becomes

IIl. EXPANDING CIRCULAR HOLE

To make contact between the STZ theory and conven-
tional theories of plasticity, and also to gain insight that
might be useful in the crack-tip problem, Lobkovsky and |
[18] studied the quasistatigoninertia) dynamics of a cir-
cular hole in a large plate with outward tractiqoressurep
— —o,,) at infinity. We assumed plane strain, neglected sur-
which is equivalent to a simple creep-compliance law withface tension at the boundary of the hole, and, in most of our
relaxation timer. calculations, assumed incompressible elasti¢Ppisson’s

For larger values of, but still for s<s,, the relation ratio »=1/2). In the case of circular symmetry, with polar
between P and s becomes nonlinear as well as non- coordinates and ¢, we used the STZ equatiorig.1) and
instantaneous. Equatio8.1) and(2.2) can be integrated to (2.2) with the deviatoric stresss being defined ass

yield =Syp(r)=—s,(r). Similarly, A(r)=A,4(r)=—24(r).

Our results were as follows.
When the applied stress at infinity,., is not too much
greater thars,, the STZ model is consistent with conven-
The conditions leading to Ed2.4) are that the system be values of the dimensionless quantikys,, a well-defined
initially in a state witheP'=A=0, that a stress<s, be  plastic zone forms around the hole. Within that zosres,
applied suddenly at time=0, and that the system reach a and A=\s,. The only difference from most conventional

~pl | -
ePl+ —gPl=—g, (2.3)
T T

2
S

1 s
s?)”

y

(2.4)

| I | _
‘g?inalz‘c:p (t—oo)=

tional time-independent plasticity theory. That is, for small
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results is that the functios(r), wherer is the radial distance " Sy—SyIn(2\sy+s,/u) for 2As,+s,/u<l,
from the center of the hole, makes a smooth transition from 7=~ 1o\ for As,>1,
s=s, inside the plastic zone te~ 1/r2 outside—a behavior (3.1

that can be recovered in some strain-hardening theories. The _ _ _
transition becomes sharp in the limit of perfect plasticity, whereu is the shear modulus ang=1/2. Again, this agrees

A—0. with the conventional result in the limk—0. For applied
As in conventional time-independent theories, the equilibstresses just slightly larger thar, that is, 0., — o'<o™',
rium radius of the hole diverges at a threshold stress the radius of the hol&(t) grows exponentially at the rate

R [(2MD)[1+2nsIn(As)](o.—0ol) for s,/u<\s <1,
=~ 3.2
R | (M7 (o.—alh) for s,/u<1<\s,. ®32

In each of the results shown in EQ.2), the quantitys'” has With this picture in mind, we can begin to think about a
the value given in the corresponding part of E311). Using  simple approximation for hole growth that might be useful in
methods similar to those used to derive E2}2), | find, for ~ the fracture problem. Note that, in the purely elastion-

sy/m<\s,<1 and for very larger.., plastig version of the hole problem, force balance and com-
patibility, plus the condition that the normal stress vanish at
R \ the edge of the hole, imply that the deviatoric stress is
ﬁav,;(o-oc—sy). (3.3 .
s(r)=o..R%r2. (3.9

An especially important aspect of these results is that, as
long as we retain nonzero values Xfwe can work in the The shear modulug does not occur here; this formula re-
limit u—oc. That is, at least for exploratory purposes, we canmains valid in the limit of infinite elastic stiffness. Near
neglect elastic displacements in using the STZ model. Théhreshold, wherer.. is of orders,, Eq.(3.9) is at least quali-
relevant dimensionless group of parameters in the STZzatively correct according to Eq3.4) for values of\s,
analysis iss,/u, which is of order 0.1 or less for many real roughly of order unity. Far above threshold, where we are
materials. Falk and [14] found s,/x=0.03 for the two- ~Well into the flowing regime described by E.6), A is
dimensional noncrystalline material that we used in our nusmall and Eq(3.5 becomes quantitatively accurate.

merical experiments. Thus this theoretical limit, which | ~ Now let us try to estimate the rate of plastic deformation
shall use here primarily for analytic convenience, may benduced by this stress field at=R. As is well known, this is
physically realistic. not a well-posed problem. For any constitutive relation be-

Unlike the STZ analysis, conventional theories effectivelytween stress and plastic deformation régecept a strictly
setA=0 at the beginning of the calculation. They then find, linear relation with no yield stregsthe stress tensor associ-
as seen in Eq(3.1), that o'"— as u—o. Moreover, for ~ated with Eq.§3.5) is not generally compatible with the vec-
values ofa-. just below threshold, conventional theories pre-tor Velocity field that we are trying to compute. We can
dict that the ratio of the radius of the outer boundary of theminimize (but not entirely removethis difficulty by, first,
plastic zone,R;, to the radius of the holeR, is of order ~USINg a stress field that is reasonably accurate as argued

/_M/Sya which also diverges in the largedimit. The reason aboye and, sep_ond, by using a local form of the constitutive
for this behavior of the conventional theories is that they'€lation. Specifically, start with
typically allow no plastic deformation outside the plastic
zone; thus, the outer displacements required by compatibility R . o ol

must be elastic. If those displacements are constrained by the g~ ees(R)=—en(R)=D[s(R)], (3.6)
stiffness of the material, then growth of the hole by plastic
flow must likewise be constrained.

The STZ theory is quite different in this regard. Accord-
ing to Eq.(3.1), the largeu threshold remains approximately
ats, except for either very small or very large values\, .

For near-threshold values of, ands,/u— 0, we have 18]

which is an exact formula in this circularly symmetric geom-
etry for incompressible plasticity and far—o. Here,D is

an approximate constitutive law, relating deviatoric stress
and the rate of plastic deformation, which must be as simple
as possible in order to be analytically useful.

2 If we choose
s(r) zsytanl‘(—z) , 3.9
2hsyr (M 7)(s—sy) for s>s,
D(s)= , 3.7
which implies thatR;/R=1/{2\s,. Thus the STZ theory 0 otherwise,

predicts a smooth and relatively thin plastic zone near the
surface of the hole. then, using Eq(3.5, we immediately find
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nor axes of the ellipse have lengthg(1+m) and W(1
(0%—Sy). (3.9 —m), respectively. We take @m<1 so that the long axis
of the ellipse lies in thex direction, perpendicular to the
applied stress, in analogy to a mode-I crack.
These elliptical coordinates provide an orthogonal basis
for a representation of the stress tensomMushkelishvili's
results are

N>

R
R

This is exactly the same as E@®.3) for largeo.,, as might
have been expected because E35) is also correct in that
limit. For values ofa., near threshold, Eq3.8) is qualita-
tively sensible. The threshold is approximately correct for
values of\s, of order unity, and the growth rate vanishes
linearly in (o..—s,) with slope\/7. For small values oks,, T ppt O 0= amRe{ 1+
where the STZ plastic zone is more extended and the devia-
toric stress at the surface of the hole is substantially less than
0., Eq. (3.8 underestimates the threshold and overesti2nd
mates the growth rate.

There are other schemes that do not work so well. FoP(P:&)=09—
example, instead of starting with E(3.6), we can use the
relation between the radial velocity and the rate of defor- = 1— + M(p,6)

mation D: dv,/dr=gP'=—D(s(r)), and then compute (p?—me’) mp®  (p?—me ?%)?
v,(R)=R by integrating this relation fronn=R out to the 4.3
edge of the plastic zone whef2 vanishes. The result is an

expression foR that vanishes quadratically, Iiktar(o—sy)2
near threshold, and also deviates substantially from(&E8) 2

at largeo... These qualitative discrepancies indicate viola-M(p, 6) = p—(1— 2me 24+ m?)+e 2(1-2me? '+ m?).
tions of compatibility; they would not occur if the streSs5) m

were exactly consistent with the constitutive relati@?), (4.4
and they disappear if | regain compatibility by setting
=0. The approximation based on the local formyga6)
works well, apparently, because it is not so sensitive to the 1 1

compatibility violations or to the fact that E¢B.7) is not an Spe= —sppzzReS(p,é)), spazzlm S(p,0). (4.5
accurate version of the STZ model near the outer edge of the
plastic zone.

2(1+m)e 2°

p2_me—2i0

(4.2

Tppt 2"7p0

U_OOPZeZiH e72i0 (1+m)672i0

where

The deviatoric stress has components

To produce a long, thin ellipse, |8/ become larger than

any other length scale in the system, andnfis 1 so that the
IV. ELLIPTICAL APPROXIMATION FOR CRACK-TIP curvatureICtip at the tip, that is, ak=W(1+m), remains

DYNAMICS: MATHEMATICAL PRELIMINARIES finite. Then a calculation to leading order\i~ 2 yields

in the preceding section in an analysis of a highly elongated

elliptical—rather than circular—hole, and in this way to ex-

plore the effects of tip blunting in fracture dynamics as out-

lined in the Introduction. As mentioned there, the idea is toThroughout what follows, the symbet denotes the largev

compute the instantaneous rate of deformation of the ellipsémit.

due to plastic displacements and then to assume that the We can see in more detail what is happening near this

deforming hole remains elliptical in order to compute subsecrack tip by looking at the stress along thexis. Set#=0 in

quent motion. Eqg. (4.1 and solve forp as a function of the distance from
The first step is to compute the stresses in the neighbothe tip, x=x—W(1+m). The result is

hood of the hole, in analogy to tii;uch shortercalculation

that leads to Eq(3.5). The elliptical version of this calcula- - 1 \2 1 \¥2

tion, for the case of zero surface tension, can be found in P(0=0)~1+ — | x+ T) _(T) } 4.7

Muskhelishvili [20]. We need Muskhelishvili's results for Ww tip tp

the case in which the stress infinitely far from the hate,

(“ p” in Muskhelishvili's notation is oriented along theg

My strategy now is to use the approximations developed 5
m~1— 14/ . 4.6

For very largew and forx<W, Eq. (4.2) and (4.3 produce

axis in thex,y plane.
To start, make the conformal transformation from Carte- (X y=0)~ 3U°°\/V—V n Uw‘/v—v
sian coordinatesx(y) to elliptical coordinatesp,6): A 20X+ 1/2K4p) 2 2Ky p(X+ 112K5) %2
(4.9
m m\
x=W| p+ o cosd, y=W|p— ;)sma. (4. Only the first term on the right-hand side of E4.8) con-

tributes to the asymptotic behavior fdﬁtip§<>1; therefore
Curves of constanp are ellipses, and curves of constght the mode-l stress-intensity factor must beK|
are orthogonal hyperbolas. If we take the boundary of the=(3/2)c../#W. When we take the limit of largaV, we
elliptical hole to be ap=1, then the semimajor and semimi- must leto., become small so tha€, remains fixed.
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In order to determine the motion of the elliptical crack tip, 1 (dv, vyl 0dN
we need to compute,(6), the normal velocity of the mate- Dop=woni|l 5ot — N 55/ (4.16
\ WN!| dp = p N g6
rial on the surface=1, and the rate of change of the curva-
ture of this surface/C(#), near the tip, that is, nea#=0. 1 (dvy v,1 9
There is a simple relation between and K, valid for any Dﬁﬁ:WNp EJF N %(pN) ' (4.17)
curve[21]:
and
. B &Zvn
== Kon™ G 49 __L (1w, e v Dy IN_veN
PP 2WN\p 96  dp p N I8 N dp)’
wherew is the displacement along the curve, adtdanduv,, (4.18
are chosen to be positive when the curve bends to the le%here
and v, points to the right asv increases. The relation be-
tweenw and the elliptical coordinaté is m2 2m
N2(p,0)=1+ — — —Ccos 20 (4.19
1 /[dw 2 ) m2 5 P P
—| =] = 1+ —|—2mcos 20~ +46°, . . . .
WZ( d0> p p? KiipW is the same quantity that occurs in the metric equaidon0).
(4.10 Dimensional analysis plus symmetry abats#t0 implies
. . ) ) that we can writey, andv 4 in the form
the final expression being valid far=1 and largew. Com-
bining the last two results, we find ~ ,a b
v,(p,0)=v,(n,0)~a(n)|1+Wo ?+—2 , (4.20
0
Coo (04 b T (4.1
KZ, T 2KeW a6, ' v4(p,0)~B(7) WO, (4.21)

where the functionsy(7) and B(7), and the numerical con-
stantsa andb, are to be determined. With these definitions
and in the largeA/ limit,

The quantityv,(0) is equal tov,, the speed at which the
tip of the crack is advancing.
From these last several equations, we seedlmsmall of

—1/2 ) : PRI _
ord_erW _ for values of/C;;,w of order unity, which is the 2 WA\ [ 75, 2BWE
region of interest. Thus, we need to ke@n our equations D,,~—|1-— —_r — 1, (4.22
only when it occurs in the combinatiof\W6, and we need to Y Y an Y
keep only terms up to orde#?® for computingl'Ctip in Eq. 5 ~ 5
(4.17). We can then make similar simplifications in the for- D%%i( 1— 2W20 ) + ﬂ( 1— 4W26 ” (4.23
mula (4.3 for the deviatoric stress. | find n 7 n
2 and
n 2 1
So9=—S,p~20..\\W —2)[1—4W02(—2——2” (4.12 5
7 " 5 it avp+(aﬁ L 2aip ))Nwl
0 N Ty T\, 2lea n .
and 7 ml2yw 90 \dn 7n
(4.24
4000\/V—V
Sp0~ " (72— 3w, (4.13 V. ELLIPTICAL APPROXIMATION FOR CRACK-TIP
DYNAMICS: APPLICATIONS
where As a first exercise in the application of these formulas,
) consider the case of linear viscoplasticity with a rate-of-
n=(p —m)yW (4.14 deformation tensoD equal to {/7)s and vanishing yield
stress. For this special situation, compatibility is automati-
and cally satisfied. If we have an elliptical hole at some moment,
we can calculate its instantaneous growth rate exaCtlyis
C(p—1)— [ 2 a1 is not to say that the hole necessarily remains elliptical at
n0=n(p=1)= o (419 |ater times). At 6=0,

tip

is the value ofy at the crack surface.

The pair of equation$4.12 and (4.13 is the analog of
Eq. (3.5 for the elliptical crack tip. The next step is to de-
duce a useful analog of the rate equati@6). To do this,
start with the expressions for the rate-of-deformation tensor

D in terms of the material velocity components and v,

[22]:

2 da 2\

2
7o
D,,~——=——0.\W— 5.1

PP pdy T i 6D

and

1 2\ 7’
Daa~?(2a+ﬂn)=+70x\/v—v?. (5.2
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In both of these equations, the first forms@fcome from  present purposes, and especially in the next applications
Egs.(4.22 and (4.23, i.e., from geometry, and the second where we shall find steady-state crack motion, it is useful to
from our viscoplastic constitutive relation and the Muskhel-assume that the quantity..\/'W remains constant, that is,
ishvili solutions for the stress in E¢4.12. It follows from thato, varies in such a way as to determine a fixed value of
Eq. (5.1 that the stress-intensity factor.
\ ) It is especially interesting that, becaugén =0 in Eq.
_A 7o (5.2), the angular velocity , vanishes near the crack tip. The
a(n)= W (6.3 plastic flow, at least in this particular case, is purely radial. A

related feature of these results is that Exj6) can be written
and then from Eq(5.2) that B(7)=0. To compute the con- in the form

stantsa andb, use the expressiorig.24) and(4.13 for the

off-diagonal element ob: N Spe(1,6)
va(0)=— K(0) (5.9
oW a—2
Do~ a(n)| —+ = - -
n n 75 whereK£(6), the curvature of the elliptical crack surface, is
4)\ 0'30\/— 1—m?
a— N . — . 2
(7%= %) ONW (5.4 K(0)= WN(Lo) Kiip(1=3K 4pW6?).  (5.10

Equating coefficients 0‘7_2 and 7% we havea=—2 and  That is, we obtain a correct expression for the normal veloc-
b=4. Thus, ity v,(6) if we use the formuld3.6) for rate of deformation
_ N 2 in the circle problem and simply replace the strain g
v,(7,0)= s Jw o (5.5 ,bCy [i(f,ggl,e) and the radiuR by the local radius of curvature
().
It follows that a plausible generalization of EG.9) for
nonzero yield stress, the analog of E(&6)—(3.9), is

2 1
1+ 2W02(—2——2
Mo 7

To check compatibility, we can use E.5) to evaluateD ,,

in Eq. (4.22 and confirm that we recover the fully

6-dependent expression fox{7)s,, as given by Eq(4.12. NAK O s..(1.0)— for s,.>
Setting 7= 7, in Eq. (5.5),Weprillave vn ;[( WK OS0(1.6)=5y] 0=y

0 otherwise,
N 2W 5 (5.11
vn(0)=—0, F(1+Ktipwe ), (5.6
T tip and therefore, fog,,(1,0)>s,,
from which we find N >wi S
Un(0)~=0.\/ 1- L
A 2W (0= Knp_( ax\/zwmip)
Utip:;o'oc K (57)
ip
s
_ 20— "
and, using Eq(4.11), +KipWo (1 . TWIC“,JH' (5.12
2\ .
Kap=—— 0. WK 2. 5.8 For Kiip>s;/(2Wo?), that is,sy(1,0)>s,,
A 2W s
Apart from numerical factors, both of these results can be Viip= —( T \| o —y) , (5.13
obtained just from dimensional analysis. The paramater T Kip  Kiip

has the dimensions of inverse stress. The applied stress can
occur only in the combination-,W; W cannot appear oth-
erwise, andl ~1 is the only other length scale in the prob- _ 2\
lem. Thus, the right-hand side of E@.7) is the only group Kiip= —(—crx\/WVlCﬁ’ng 25,Kiip)- (5.14
of parameters that can have the dimensions of velocity. A T
similar argument yields E(5.8).

This model, with no yield stress, clearly is describing a
ductile material. Equation5.7) and (5.8) tell us thatuvyp,
increases an#{;, decreases with time, which means that the

and, with Eq.(4.11),

The presence of a nonzesp completely changes the na-
ture of these results from what we found in E¢s.7) and
(5.8). Equation(5.14 has a stable fixed point at a nonzero

crack tip blunts until the sharp-tip approximatiofCy(, W value of the tip curvature, say, &, =K tip» Where

>1) becomes invalid. The long, thin ellipse grows out to 2

become an expanding circléSee[23] for a stability analysis K* = Zsy (5.15
of the growing circular hole. P \Wed '

Equations(5.7) and(5.8) give us the tip velocity and rate
of change of the curvature at some instant of time for specifNote that Cf;, is larger than the minimum value d€;,

fied values ofCi;, andW. We also know thatztip~2\N. For  consistent with sy4(1,0)>s,.] The tip blunts—y,
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decreases—when ’Cnp>’C§pa and it sharpens#G, led to Eq.(5.5). Whens, is nonzero, the dimensional argu-

increases—wherk;, <K}, . The steady-state tip speed is Ment is valid only within the approximatiod.11). _
therefore To see what these equations mean, define a dimensionless
parametek* at the dynamical fixed point:
ol =t (516 :
Utip = Utip(Kyip E; 25 . iV tip
y k - Vaw: (5.20

As advertised in the Introduction, the tip-stress puzzle ha . . . .
disappeared. In the absence of surface tension, the thresh(%&mng the right-hand side of E¢5.19 to zero, we find

for crack advance is at.=0. Above this thresholdy;, 1 4d

rises linearly as a function af2W, a quantity that is pro- k*=k*(g)= —( \/1+ ——1), (5.2)

portional to the energy release ratein the purely elastic 2d 9

case. This is brittle behavior. For any nonzero yield stress : : ;

plastic deformation is localized near the tip, and the crackand’ according to Ed5.18, the steady-state crack speed is

finds a stable shape at which it advances steadily. Nyl 1 1
Moreover, as the driving force and the tip speed increase, vf}p:—( ——C— ) . (5.22

the crack becomes blunter according to Efj15. This is a 7K 2gk*?

natural feature of the crack-shape dynamics in which the

curvaturelCy;, controls the stress concentration at the tip. atHere

largero.., less concentration is needed in order for the tip 2

. . Wo s,
stress to reach values in the neighborhoodsof and the g= (5.23
curvature decreases. It is interesting to speculate that this 7Sy

dynamic blunting might lead to a branching instability at. . . . .
large crack speeds—a possibility that is well beyond thésad|men5|onless group of parameters that is proportional to
range of the present analysis. the energy release rate. The combination of Eqs(5.21)

The simplicity of the approximation5.11) makes it and (5.22) t.eIIs us thatrvz‘ip/y)\ is a universal function of
possible to include surface tension in this analysis withthat rises linearly from zero at some threshold valug 64
only a little extra effort. In principle, we need to modify Numerical constaintand, consistent with Eq(5.16, ap-
Muskhelishvili's calculation so that, instead of setting theProachesy/2 for largeg. For example, ifc=0.5 andd=1,
normal stressr,, equal to zero at the surface of the ellipse the result is almost indistinguishable from the straight line
we use e v}/ YN=(g—1.3)/2. Apart from the nonzero threshold, the

surface tension produces no qualitative changes, in particu-
o,,(1,0)=yK(0), (5.1 lar, no transition from brittle to ductile behavior except at
s,=0. Note also that, at thresholﬂf‘ipfvsy/y and, with Eq.
where y is the surface tension. In practice, this is a major(4.12, s4,(1,0)~s,. As expectedK;, has adjusted dy-
project. | believe that the problem is analytically solvable,namically so that the concentrated stress at the tip is propor-
and hope to report results in a subsequent publication. Fdional to the plastic yield stress.
present purposes, however, we do not need so detailed an
analysis. VI. DISCUSSION
Because Muskhelishvili's calculation uses only linear
elasticity, the resulting stress field is the sum of two terms, | conclude with some remarks about the nature of the STZ
one proportional tar.. as shown in Eqs4.2) and(4.3), and  theory and how it may relate to fracture dynamics.
a second proportional tg. The new term is an additive ~ The first point to emphasize is the uncertainty of the ap-
contribution tos,,(1,6) in Eq. (5.11). Dimensional analysis Proximation (5.11). Although the analogous approxima-

tells us that the new expressions fqy; andI'Ctip must have tion seems roughly accurate n th? circle prOb'e”.‘ for some
range of values ohs, near unity, it could be entirely in-

the form correct for the crack tip. So far as | can see, the only way to
N SW s test this approximation_ and the conc_lusiqns _I draw from _it
Viip= _( T2\ [Z7 _y_cy) (5.189 is by numerical analysis. Such a project is high on my pri-
T Kip  Kiip ority list.
A different kind of uncertainty is whether the STZ version
and of plasticity theory is necessary for the picture of crack-tip

o dynamics presented here or whether qualitatively the same
-~ 32 2 behavior and the same solution of the tip-stress puzzle might
K“pz7(_Uw\/ﬁwc“p+25ylc“p_dylc“p)' (519 e obtained with conventional theories? I need@d the S'?’Z
model as justification for the approximatigh.11), without
wherec andd are purely numerical coefficients. In the casewhich | could not make progress analytically. | suspect, how-
of linear viscoplasiticity withs, =0, the stress field including ever, that the physics of the STZ model is playing more than
surface tension would still be fully compatible; thereforejust a technically convenient role. As discussed in Sec. I,
these results would be exactly correct and the valuesaoid ~ one important difference between the STZ model and con-
d would emerge from a calculation analogous to that whichventional theories is that it predicts a smooth transition from
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viscoplasticity inside the plastic zone to viscoelasticity out-In fracture, the hardened material left along the crack, in the
side. Compatibility therefore does not require so large andvake of the plastic zone, will be described by nonzero values
rigid a plastic zone surrounding the crack tip as is predictedf A.
by conventional theories. The comparatively smooth and thin This strongly stress-dependent rate factor in the STZ
plastic zone in the STZ model is controlled by the quantitytheory has another implication for fracture analysis. The vis-
\s,, which may be of order unity, as opposed to the ordi-coelastic law(2.3) is not strictly valid far ahead of the crack
narily very small ratios,/u in conventional theories. The tip unless the system is everywhere so highly stressed or
approximation(5.11) makes sense only if we can take the given so long an equilibration time that the missing rate fac-
limit s,/u—0 while keeping nonzero values of the strain- tor is unimportant. In realistic situations, therefore, energy is
hardening parametex. stored elastically in distant regions where the stress is small
A related issue has to do with energy balance. In theenough that the viscoelastic response cuts off. As usual, it is
Griffith analysis [19], the stored elastic energy per unit the elastic energy that ultimately drives fracture. In cases
length of the sample is of ordeB®'~o2L/u, whereL is  Where the plastic dissipation rate is compa_rabl_e to or smaller
some macroscopic length, say, the width of a very long strighan the bare fracture energy, the behavior is likely to be
along whose centerline the crack is advancifig.our ellip-  highly sensitive to details of the plasyc constitutive Ia\{vs. On
tical calculations with infinitely distant boundaries in all di- the other hand, ik u>1 and plastic dissipation is dominant,
rections, the quantityV plays the role of this macroscopic then some generalization of the infinjtecalculation pre-
length) The stored elastic energy vanishes in the limit, ~ Sented here should be accurate. _
but that limit is permissible only because there are other Finally, there are two basic questions to which I have
degrees of freedom in the system that account for displacedlluded only briefly so far. First, what has happened to the
ments of the material. In particular, if the STZ viscoelasticPrittle-ductile transition, which we have seen here only at
law (2.3) remains valid down to arbitrarily small stress, then Sy=07? The mathematical signature of ductility in this theory
the work done in loading the strip is proportional @' would be the disappearance of the fixed point curvature
~\o2L. This is much bigger thaG®' if, as we have as- Kfip so that, as in Eq(5.8), the tip blunts indefinitely. That
sumed,u\>1. Note that this assumption is exactly oppositeMight happen for some or all values of the driving force,
to that of Freund and Hutchinsdi8], whose analysis was for nonzeros,. One possibility is that such a mechanism
limited to situations in whicrGe's>GP'. has been lost here in the approximati@ll). Another is
There remains an interesting issue here. In conventiondhat the extreme stiffness implied by the—c limit sup-
interpretationsGP!' is nonrecoverable energy, unavailable for Presses ductility. Both possibilities may simultaneously be
creating new fracture surfaces. That is not necessarily theor"ect. _ _ _
case for the STZ model. Consider the example of a solid S€cond, there is the question of whether or when this
expanding uniformly under negative pressure, perhaps thiicture of crack-tip dynamics governed by plasticity might
plate discussed in Sec. Ill without the hole in it. In addition P& valid. At first glance, we might guess that the picture is
to purely elastic expansion, there may be vacancy formatiorlausible only for highly deformable materials with smsl
or vacancies may diffuse in from the surface. This is a kindvhere plastic flow in the neighborhood of a crack tip might
of irreversible bulk plasticity; the vacancies do not instanta’@semble fluid flow near a viscous find@|. I suggest that
neously disappear when the system is unloaded, and the pldf€ picture is much more generally correct, at least as long as
does not immediately recover its initial shape. However, a$ @m allowed to adopt a liberal interpretation of the term
the system comes to equilibrium, the vacancies may find itPlastic deformation.” o _
energetically and kinetically favorable to coalesce and form Falk's recent molecular dynamics simulatiop85] of
voids, so that part of their stored energy is converted to neWrittle fracture in amorphous solids clearly show crack tips
surface energy. | suspect that the shear transformation zon8@t are blunt on scales of roughly ten atomic spacings and
are playing a similar role—that they are created or reorientedignificant amounts of STZ activity near these tips. Even the
in the deforming region ahead of the crack tip, and that parfimulations of Zhouet al. [26] and of Marder and co-

of the plastic work done in this process is converted to surWorkers[27] show molecular rearrangements and blunting
face energy as the crack advances. on the scale of a few atomic spacings at the tips of cracks in

This picture becomes even more interesting and COn~,|o|egjefect—free crystalline solids. | do not suggest, for either of
in the full STZ theory [14], where a strongly stress- these cases, that the molecular rearrangements near the crack
dependent rate factor produces hysteretic effects. PerhafiB are accurately described by any continuum theory of plas-
the most important advantage of the STZ theory, one whichicity. Nevertheless, the idea that dynamic blunting brings
we have not exploited here, is that plastically deformedthe stress at the tip down to values of ordgseems to make
regions of a material are characterized not just by displaceSe€nse, whether or not the continuum approximation is quan-
ment fields but also by the state varialeThe rate factor in  titatively correct.
the full theory effectively vanishes at small stress; the mate- AS pointed out at the end of Sec. V, near threshalf, is
rial creeps on extremely long time scales. Thiisemains ~ proportional tos,/y, a quantity that is small in easily de-
nearly zero when a previously undeformed material is subformable materials whers, is small. On the other hand, if
jected to a small stress. On the other hand, when a stronghye take the Dugdale assumption literally, thgnis the co-
deformed material is unloaded, remains at whatever value hesive stress, ang is equal tos, times the range of the
it reached during the deformation. That residual valuA &f ~ cohesive forces. In this casky, is of the order of inverse
the means by which the system “remembers” its history; itatomic spacings. While the continuum approximation cannot
determines how the system responds to subsequent loadindm strictly correct at such small length scales, its prediction is
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